tlm_adjoint.torch
Interface with PyTorch.
Can be used to embed models, differentiated by tlm_adjoint, within a PyTorch calculation. Follows the same principles as described in
Nacime Bouziani and David A. Ham, ‘Physics-driven machine learning models coupling PyTorch and Firedrake’, 2023, arXiv:2303.06871v3
Module Contents
- tlm_adjoint.torch.to_torch_tensors(X, *args, **kwargs)
Convert one or more variables to
torch.Tensor
objects.- Parameters:
- Xvariable or Sequence[variable, …]
Variables to be converted.
- args, kwargs
Passed to
torch.tensor()
.
- Returns:
- tuple[variable, …]
The converted variables.
- tlm_adjoint.torch.from_torch_tensors(X, X_t)
Copy data from PyTorch tensors into variables.
- Parameters:
- Xvariable or Sequence[variable, …]
Output.
- X_tSequence[
torch.Tensor
, …] Input.
- tlm_adjoint.torch.torch_wrapped(forward, space, *, manager=None, clear_caches=True)
Wrap a model, differentiated using tlm_adjoint, so that it can be used with PyTorch.
- Parameters:
- forwardcallable
Accepts one or more variable arguments, and returns a variable or
Sequence
of variables.- spacespace or Sequence[space, …]
Defines the spaces for input arguments.
- manager
EquationManager
Used to create an internal manager via
EquationManager.new()
. manager() is used if not supplied.- clear_cachesbool
Whether to clear caches before a call of forward.
- Returns:
- callable
A version of forward with
torch.Tensor
inputs and outputs.